ON MODULAR GROUPS ISOMORPHIC WITH A GIVEN LINEAR GROUP*

BY

H. F. BLICHFELDT

THEOREM. Given a group G of linear homogeneous substitutions in n variables, transitive (irreducible) and of finite order. Then there exists an infinitude of prime numbers p for each of which we can construct a simply isomorphic transitive group G' of linear homogeneous substitutions in n variables, the elements of whose matrices are integers taken modulo p.

Let the operators of the abstract group G'' simply isomorphic with G be S_i'' , $i=1,2,\cdots,N$. Write down N matrices in n variables with undetermined coefficients

$$S_i' = ||a_{ik}^i||,$$

and form the N^2 products $S_i' S_j'$. Writing $S_i' S_j' = S_k'$ whenever $S_i'' S_j'' = S_k''$, we obtain $n^2 N^2$ equations in the elements a_{jk}^i . This system of equations shall be denoted by A. Any system of elements a_{jk}^i satisfying A will furnish a linear group G_1 isomorphic with G''. That this group may be transitive in n variables we must, furthermore, have no equation of the form \dagger

(1)
$$\sum_{i,k} b_{jk} a^i_{jk} = 0 \qquad (i=1, 2, \dots, N),$$

the coefficients b_{jk} being independent of i. In other words, zero cannot be the value of every determinant of $(n^2)^2$ elements of the matrix of n^2 columns and N rows, the ith row of which is formed of the n^2 elements a_{jk}^i . We shall denote by B' the system of equations obtained by equating to zero all the determinants mentioned. Furthermore, in order that G_1 may not contain two transformations that are identical, we must exclude all possible sets of solutions of A for which two rows of the matrix of n^2N elements just mentioned are identical. This condition expressed in analytical form is as follows: the expression

^{*} Presented to the Society (Chicago), April 14, 1906. Received for publication February 13, 1906.

[†] BURNSIDE, Proceedings of the London Mathematical Society, vol. 3 (1905), p. 433; FROBENIUS, Sitzungsberichte der K. Preussischen Ak. der Wissenschaften, 1897, p. 1004.

$$P \equiv \prod_{i,i'} \left\{ \sum_{j,k} \lambda_{jk} \left(a^i_{jk} - a^{i'}_{jk} \right) \right\} \quad \begin{pmatrix} j,\, k=1,\, 2,\, \cdots,\, n^2\,;\\ i,\, i'=1,\, 2,\, \cdots,\, N\,;\, i+i' \end{pmatrix}$$

must not vanish for a set of n^2 arbitrary parameters λ_{jk} . We shall modify the system B' by multiplying each of its equations by P, and we shall denote the resulting set of equations by B.

Now, because the transitive group G exists, the system A can be solved, and solutions exist which will not satisfy all the equations of B. To solve A we may, by a well known process, form a normal equation of the system, an algebraic equation whose coefficients are integers and which has no double roots. Let this equation be

(2)
$$F = a_{\epsilon} x^{\epsilon} + a_{\epsilon-1} x^{\epsilon-1} + \dots + a_0 = 0.$$

Denoting by x any one of the roots of this equation, we can write every corresponding value of a_{jk}^i as an integral function of x, the coefficients of which are definitely given rational numbers (the same for any root x of (2) considered). Substituting in the system B we have a series of equations in x with rational coefficients, known functions of the parameters λ_{jk} , which equations could not all be satisfied for every root x of (2). Hence F=0 has at least one root not found in one (say C=0) of the equations B. Let us suppose $F\equiv F_1F_2$, where $F_1=0$ has no root in common with C=0.* Then we can construct an identity of the form

$$\alpha F_1 + \beta C \equiv K_1 \neq 0,$$

where α , β and βC are integral functions of x whose coefficients, as well as K_1 , are integral functions of the parameters λ_{jk} with integral coefficients. To every root x of $F_1 = 0$ will correspond a transitive group G_1 simply isomorphic with G''.

The question whether or not there exists a transitive linear group in n variables simply isomorphic with G'' with coefficients modulo p can now be solved. We start as above with the N matrices

$$S_i' = ||a_{jk}^i||$$

and write down all the congruences (mod p) following from the equations $S_i' S_j' = S_k'$. The system A above will merely be replaced by congruences, and instead of $F = F_1 F_2 = 0$ we will have $F = F_1 F_2 \equiv 0 \pmod{p}$. We remark that the coefficients of F, F_1 and F_2 are all known integers, although p is, as yet, not known. The elements a_{jk}^i are, as above, expressed as integral functions of a root x of $F_1 \equiv 0 \pmod{p}$, the coefficients of which functions are known fractions. Let the least common multiple of all the denominators entering in these functions be denoted by M. We shall replace the parameters λ_{jk} by such a system of integers that K_1 does not vanish. The resulting value of K_1 (an integer) will be denoted by K.

^{*} We seek the highest common factor of F and C, etc. The coefficients of F_1 and F_2 will be supposed to be integers.

Suppose that $F_1 = b_m x^m + \cdots + b_0$. We may assume that $b_0 \neq 0$, as we may replace x by x + h. Let us substitute for x in $F_1 \equiv 0 \pmod{p}$ the quantity MKb_0y . We obtain

$$b_0 \{ MK(c_m y^m + \dots + c_1 y) + 1 \} \equiv 0 \pmod{p},$$

the coefficients of the left-hand member being known integers evidently not all zero.

If we substitute any integer y' for y such that

$$MK(c_m y'^m + \cdots + c_1 y') + 1 = L \neq 1 \text{ or } 0,$$

and choose for p any prime factor > 1 of L, we have a modulus p fulfilling the conditions of the problem. For, p is prime to MK, and $F_1 \equiv 0 \pmod{p}$ has a solution $x = MKb_0y'$. Accordingly, the system of congruences A is satisfied, but not the system B (by virtue of the identity $\alpha F_1 + \beta C \equiv K$). Because A is satisfied, we have a modular group H isomorphic with G''. If this group is intransitive modulo p, it may be transformed into a group of type

$$\frac{H_1}{0} \left| \frac{0}{H_2} \right|$$

from which it follows that the elements of H satisfy at least one system of congruences corresponding to (1), from which again would follow the system B, and therefore also $C \equiv 0 \pmod{p}$. Again, if H were not simply isomorphic with G, the factor P would vanish $(\bmod p)$, and therefore also every equation of B. But this is not the case, according to our procedure.

BERLIN,

January, 1906.